• No products in the cart.

  • LOGIN

Vật chất tối

Vật chất tối (dark matter) được xem là những thứ chỉ gây ra các tác động dưới dạng trọng lực (hay lực hấp dẫn). Nhưng một kết quả quan sát thiên văn mới đây cho thấy điều đó có lẽ không đúng nữa.

Trong vật lý, tất cả các tương tác giữa mọi loại vật chất đều có thể quy về 1 trong 4 lực cơ bản: lực hấp dẫn (tạo ra bởi khối lượng), lực điện từ, lực tương tác hạt nhân mạnh và lực tương tác hạt nhân yếu. Lực hấp dẫn là thứ đã giữ chúng ta không bay ra khỏi Trái Đất khi nó đang quay quanh trục, là thứ giữ cho Mặt Trăng quay quanh Trái Đất và Trái Đất quanh Mặt Trời…, là thứ khiến cho bụi vũ trụ quần tụ lại thành các ngôi sao, hành tinh, thiên hà… Lực điện từ là thứ giúp cho chúng ta có hình dạng như hôm nay, chứ không phải một đống bẹp nhẹp đang bò sát bề mặt Trái Đất dưới tác dụng của lực hấp dẫn, tương tự như thứ đã giúp tháp Effiel hay các toà cao ốc vươn lên bầu trời, chứ không đổ sụp vì trọng lực.

Lực hạt nhân mạnh là thứ giúp cho phản ứng nhiệt hạch xảy ra, giúp các ngôi sao phát sáng, giúp Mặt Trời sưởi ấm Trái Đất và giúp tổng hợp (hợp hạch) lên các nguyên tố nặng chỉ từ các nguyên tử hydrogen đang có trong từng người chúng ta. Còn lực hạt nhân yếu là thứ khiến vật chất có tính phóng xạ dưới dạng phân rã hạt nhân, cũng là thứ giúp tạo ra những nhà máy điện hạt nhân (phân hạch) mà chúng ta đang sử dụng trong hôm nay. Ngược với lực hạt nhân mạnh có tính tạo nên những vật chất nặng hơn, lực hạt nhân yếu làm cho chúng trở nên nhẹ đi.

Tuy vậy, cả 4 lực trên đều được nhân loại đúc kết từ những vật chất “sáng”, hay những vật chất mà chúng ta “nhìn thấy” và “quan sát” được, chủ yếu nhờ vào sóng ánh sáng hay bức xạ điện từ. Nhưng vật chất “tối”, thứ vật chất vốn không có tương tác điện từ, nên chúng hoàn toàn không có khả năng bức xạ, phản xạ hay tán xạ những tia sáng tiếp cận mình. Và do đó, các kính thiên văn quang học (hay dựa trên bức xạ điện từ như UV, IR, X-ray…) mà loài người đang có, không quan sát được loại vật chất này. Chúng hoàn toàn “vô hình” về mặt quang học.

Radioactive decay

Sự phân rã hạt nhân nguyên tử là kết quả của tương tác yếu giữa các nucleon

Nhưng dựa vào đâu mà các nhà khoa học lại có thể nghĩ ra thứ vật chất “không giống ai” này? Đó là vì những kết quả quan sát thiên văn các thiên hà xa xăm. Theo đó, nếu chỉ dựa vào lượng vật chất “sáng” mà các kính thiên văn tìm thấy thì mọi thứ “không thể tồn tại như chúng ta thấy”. Với tốc độ xoay quanh trục của từng thiên hà, cũng như sự xoay quanh lẫn nhau giữa các thiên hà lẫn các nhóm thiên hà, mọi thứ “đáng ra” phải “văng tứ phía”. Lấy ví dụ như chính Dải Ngân Hà, với tốc độ xoay này, hệ Mặt Trời có lẽ đã không còn nằm ở đây. Song một thứ vật chất vô hình nào đấy với khối lượng chiếm tới 84,5% toàn vũ trụ đã “giữ” cho mọi thứ “nằm yên tại đấy”.

Và vì thứ vật chất đấy có khối lượng, nên các nhà khoa học cho rằng loại lực cơ bản mà vật chất “tối” có chính là lực hấp dẫn. Nhưng vì chúng ta không nhìn thấy được loại vật chất này, cũng như chưa tạo ra được chúng, nên vật chất “tối” còn những tính chất gì khác vẫn nằm ngoài tầm hiểu biết của con người.

Dark matter and dark energy

Thành phần vật chất tối, sáng và năng lượng tối sau khi vũ trụ ra đời được 380.000 năm

Nhưng một kết quả hợp tác quan sát mới đây giữa NASA và cơ quan thiên văn châu Âu ESA dường như đang hé lộ những thuộc tính khác của loại vật chất này. Khi cả hai hệ thống kính Hubble lẫn Very Large Telescope (VLT) cùng quan sát nhóm thiên hà có tên Abell 3827, cách Trái Đất 1,4 tỷ năm ánh sáng, các nhà thiên văn đã nhận ra một số điều bất thường.

Thông thường vật chất tối nằm bao bọc quanh các thiên hà như một lớp vỏ. Tâm điểm của những cái vỏ ấy lẽ dĩ nhiên cũng là tâm điểm của thiên hà. Song trong lần quan sát này, cả hai hệ thống kính đều ghi nhận sự lệch tâm của một lớp vỏ “tối” khỏi thiên hà nằm bên trong đó. Khoảng cách lệch tâm này dài khoảng 5.000 năm ánh sáng. Con số này là nhỏ so với kích thước của một thiên hà, song về lý thuyết nếu chỉ tồn tại lực hấp dẫn, đáng ra nó luôn phải là zero.

Vậy là các nhà vật lý cùng lao vào giải thích. Trong khoảng ít nhất một thập kỷ trở lại đây, một số ý kiến cho rằng vật chất tối là những hạt WIMP (khối lượng nặng nhưng tương tác yếu). Có nghĩa ngoài trọng lực ra, các hạt vật chất này có tương tác yếu lên lẫn nhau, tương tự thứ tương tác yếu của hạt nhân nguyên tử. Nhưng tất nhiên, thứ tương tác yếu này không hoàn toàn giống như tương tác yếu của vật chất “sáng”.

Abell 3827 galaxy cluster

4 thiên hà trong nhóm thiên hà Abell 3827 đang sát nhập với nhau. Một trong các thiên hà có lớp áo “tối” bị lệch tâm so với những thiên hà còn lại

Cũng có một số cách giải thích khác. Có cách cho rằng dưới tác dụng của lực thuỷ triều, một số ngôi sao cùng nhau “cất tiếng khóc chào đời” và làm sáng lên một góc của thiên hà trên. Điều đó đã dẫn tới việc độ sáng biểu kiến của thiên hà bị thay đổi và khiến các nhà thiên văn nghĩ nó bị lệch tâm. Lại có ý kiến cho rằng khối lượng của các thiên hà gần đấy đã “làm cong” tia sáng phát ra từ thiên hà trên khi chúng đến Trái Đất. Hiện tượng này còn được gọi là thấu kính trọng trường (gravitational lensing).

Tuy vậy, ý tưởng về một lực tương tác mới mà chúng ta chưa biết vẫn được xem là giải thích hợp lý nhất. Massey, một thành viên trong nhóm quan sát, cho biết: “Thật khó để nghĩ ra một lời giải thích nào thuyết phục hơn. Nhưng với một phát hiện thú vị như thế này, chúng tôi buộc phải cực kỳ cẩn thận trước khi ‘la làng’ lên cho mọi người cùng biết”.

Theo đó, nếu vật chất tối thực sự là các WIMP, thì khi thiên hà bị lệch tâm trên bay qua lớp áo “tối” của thiên hà khác, lớp áo của thiên hà này đã va chạm và tương tác với lớp áo khác trên. Kết quả là nó bị “níu lại” và sau cùng dẫn tới sự lệch tâm. Dĩ nhiên, các nhà thiên văn vẫn chưa biết thứ tương tác trên là gì. Song nếu điều đó đúng, thì bức màn “tối” về loại vật chất vô hình này sẽ phần nào được hé mở.

Nhưng trong khoa học, chỉ một kết quả nghiên cứu là không đủ. “Chúng ta rõ ràng cần nhiều bằng chứng hơn”, Jason Rhodes, chuyên gia vật chất tối tại Phòng nghiên cứu Động cơ Đẩy của NASA, nhận xét. Do đó, một số kế hoạch quan sát mới ở các nhóm thiên hà khác đang được tiến hành. Nếu nhiều kết quả quan sát cùng trả về giá trị tương tự, rất có thể lý thuyết các hạt WIMP sẽ được công nhận.

 

Liệu con người có tạo ra được vật chất trong LHC?

Tuy vậy, khẳng định được lý thuyết WIMP cũng không nói lên được chúng ta đã hiểu đầy đủ về thứ vật chất này. Liệu chúng còn các thuộc tính nào khác hay không? Chúng đến từ đâu và chúng còn ảnh hưởng nào khác lên vũ trụ?

Rất có thể câu trả lời sau cùng sẽ đến từ cỗ máy gia tốc lớn nhất thế giới, LHC, sau khi nó được nâng cấp xong hồi đầu năm nay, với mục tiêu “sản xuất” được vật chất tối ngay trên Trái Đất.

Tổng hợp từ National Geographic và Wikipedia

 

Tuy nhiên có 1 vài giả thuyết ngược lại

Trong gần một thế kỷ qua, các nhà nghiên cứu đã giả định rằng vũ trụ chứa nhiều vật chất hơn những gì đã được quan sát trực tiếp. Loại vật chất chưa thể quan sát, yếu tố khiến các vì sao chuyển động đã được gọi tên là vật chất tối chiếm 27% vũ trụ. Ngoài ra trong vũ trụ còn một thành phần thúc đẩy quá trình tăng tốc giãn nở vũ trụ, mạnh mẽ hơn cả lực hấp dẫn, được gọi là năng lượng tối chiếm đến 68% vũ trụ.

Tuy nhiên, theo một nhà nghiên cứu đến từ đại học Geneva (UNIGE) ở Thụy Sĩ thì hai khái niệm trên không còn hợp lý nữa. Nhóm này đã minh họa được các hiện tượng mà không cần đến vật chất tối và năng lượng tối. Nghiên cứu được xuất bản trên tạp chí vật lý thiên thể The Astrophysical Journal nhiều khả năng sẽ giúp chúng ta giải đáp được hai trong số các bí ẩn lớn nhất của ngành thiên văn học.

 

Theo Science Daily, vũ trụ và lịch sử tiến hóa được mô tả tượng trưng bằng các phương trình trong thuyết tương đối rộng của Einstein, lực hấp dẫn phổ quát của Newton và cơ học lượng tử. Mô hình vũ trụ trung tâm hiện nay là big bang và sự giãn nở (ảnh dưới).

Theo giáo sư danh dự bộ môn thiên văn của UNIGE André Maeder, mô hình truyền thống trên chưa tính đến một giả thuyết, đó là sự bất biến theo quy mô của không gian rỗng, yếu tố có mặt trong các phương trình tương đối rộng nguyên bản của Einstein qua đại lượng “hằng số vũ trụ” (cosmological constant).

Hằng số này là yếu tố chi phối mô hình truyền thống được xây dựng trên phương trình của Einstein. Maeder cho rằng không gian rỗng và các đặc điểm của nó sẽ không thay đổi theo quy mô, nghĩa là dù giãn nở hay thu hẹp thì không gian rỗng và các đặc điểm của nó vẫn giữ nguyên.

 

Phương trình tương đối rộng nguyên bản của Einstein (Ảnh: UTokyo Research)

Maeder đã xây dựng và thử nghiệm ba mô hình mới: mô hình đầu tiên dựa trên thuyết tương đối rộng của Einstein, thử nghiệm thứ hai dựa trên luật hấp dẫn của Newton (một phiên bản cụ thể của các phương trình tương đối rộng), thử nghiệm thứ ba xem xét độ phân tán tốc độ của các vì sao quay quanh Milky Way (thiên hà có trái đất của chúng ta).

Trong thử nghiệm đầu tiên dựa trên thuyết tương đối rộng, các kết quả tính toán đều phù hợp với các quan sát. Mô hình đầu cũng dự đoán được sự giãn nở đang gia tốc của vũ trụ mà không cần tới các yếu tố năng lượng tối hay năng lượng phân tử.

Tóm lại, các phương trình vật lý trong mô hình đầu tiên dựa trên thuyết tương đối rộng của Maeder đã bao gồm sự gia tốc giãn nở vũ trụ, do đó có thể thực tế không tồn tại cái gọi là năng lượng tối.

 

Trong mô hình thứ hai dựa trên luật hấp dẫn của Newton, áp dụng cho các cụm thiên hà, mô hình này cho thấy vô số cụm thiên hà phù hợp với vật chất thấy được, nghĩa là chúng ta có thể giải thích được tốc độ cao của các thiên hà trong các cụm thiên hà mà không cần đến vật chất tối. Luật hấp dẫn Newton đã điều chỉnh cũng dự đoán được các vì sao sẽ đạt được tốc độ cao ở các khu vực rìa ngoài thiên hà mà không cần miêu tả vật chất tối.

Trong thử nghiệm thứ ba tập trung vào độ phân tán trong tốc độ của các vì sao dao động quanh mặt phẳng Milky Way (thường gia tăng theo độ tuổi của các ngôi sao liên quan), giả thuyết không gian rỗng bất biến (không thay đổi) truyền thống đã giải thích rất tốt sự phân tán tốc độ này. Kết quả độc đáo này là điều mà trước giờ khoa học vẫn chưa thống nhất.

Khám phá mới của Maeder sẽ mở đường cho một khái niệm mới trong thiên văn, một khái niệm gây nhiều nghi vấn và tranh cãi. “Mô hình này cuối cùng đã giải quyết được hai trong những bí ẩn lớn nhất của thiên văn. Việc công bố nó vẫn đúng với tinh thần khoa học: không điều gì có thể mãi mãi là hiển nhiên, không chỉ trong các mặt kinh nghiệm, quan sát hay lý luận của con người”, giáo sư André Maeder kết luận.

Vật chất tối và năng lượng tối

Vật chất tối bắt đầu có tên trong tự điển thiên văn thế giới vào năm 1933, khi nhà thiên văn Thụy Sĩ Fritz Zwicky có một khám phá chấn động thế giới: vũ trụ có nhiều vật chất hơn những cái chúng ta đã thấy trong thực tế. Đến những năm 1970, khái niệm vật chất tối càng trở nên quan trọng hơn khi nó được nhà thiên văn Mỹ Vera Rubin dùng để giải thích sự dịch chuyển và tốc độ của các vì sao. Sau đó giới khoa học đã cống hiến nhiều nguồn lực đáng kể để xác định vật chât tối: trên không gian, mặt đất và tại CERN (Tổ chức Nghiên cứu hạt nhân châu Âu) nhưng tất cả đều không thành công. Năm 1998, thế giới lại chứng kiến khám phá chấn động thứ hai: phát hiện sự gia tốc của vũ trụ đang giãn nở từ một nhóm các nhà vật lý thiên thể Úc và Mỹ. Khám phá được gọi là năng lượng tối này đã được trao giải Nobel vật lý 2011.

Bất chấp những nguồn lực khổng lồ đã được thực hiện nêu trên, chưa từng có lý thuyết hay quan sát nào có thể định nghĩa được loại năng lượng đen được cho là mạnh hơn cả lực hấp dẫn của Newton. Từ khi được phát hiện, vật chất đen và năng lượng tối là hai bí ẩn đã thách thức giới thiên văn trong gần một thế kỷ qua.

Trước nghiên cứu của UNIGE ở trên thì hồi tháng tư năm nay cũng đã có một nhóm nhà khoa học Hungary công bố giả thuyết mô hình vũ trụ mới không cần năng lượng tối. Giải thuyết này xem mật độ vật chất vũ trụ là khác nhau, vì vậy sự giãn nở vũ trụ cũng khác nhau. Các kết quả tính toán cũng cho thấy mô hình này phù hợp với thuyết tương đối rộng và cũng lý giải được sự giãn nở vũ trụ không có năng lượng tối.
Theo Science Daily

January 17, 2020

0 responses on "Vật chất tối"

Leave a Message

Your email address will not be published.

inPhysic is an online education site which imparts knowledge and skills to million of users worldwide.

280 an dương vương, phường 4 quận 5,  Hồ Chí Minh
0976 905 317
[email protected] | [email protected] | [email protected]

Top Categories

january, 2021

No Events

top
X